News

Cybercore’s CORE-ReID Algorithm Using Generative AI Secures 1st Place on “Papers with Code” in Unsupervised Domain Adaptation for Person Re-Identification.

2024.07.11

data augmentation enhanced by CycleGAN
Some style-transferred samples in Market-1501 dataset. Each image, originally taken by a specific camera, is transformed to align with the styles of the other five cameras, both within the training and test data. The real images are shown on the left, while their corresponding style-transferred counterparts are shown on the right.

CORE-ReID ranked 1st on Papers with Code

CORE-ReID, Cybercore’s Unsupervised Domain Adaptation for Person Re-ID algorithm, is ranked in the 1st place, in the relevant category on “Papers with Code”, a site for publishing papers that gather researchers from all over the world.

The algorithm’s name is derived from our company name, CORE in “Cyber Core.” The research was carried out by our AI engineers in collaboration with the PRIMA lab, led by Dr. Prima at Iwate Prefectural University (http://p-www.iwate-pu.ac.jp/~prima/).

Features of CORE-ReID:
The features of CORE-ReID are as follows:
1. Novel Dynamic Fine-Tuning Approach with Camera-Aware Style Transfer using Generative AI: We introduce a pioneering fine-tuning strategy that employs a camera-aware style transfer model for Re-ID data augmentation. This novel approach not only addresses disparities in images captured by different cameras but also mitigates the impact of Convolutional Neural Network (CNN) overfitting on the source domain
2. Innovative Efficient Channel Attention Block (ECAB): We develop a groundbreaking ECAB that leverages the inter-channel relationships of features to guide the model’s attention to meaningful structures within the input image. This innovation enhances feature extraction and focuses the model on critical identity-related features.
3. CORE Framework with Ensemble Fusion of Global and Local Features: We establish the CORE (Comprehensive Optimization and Refinement through Ensemble Fusion) framework, which utilizes a novel pair of teacher-student networks to perform an adaptive fusion of global and local (top and bottom) features for multi-level clustering with the objective of generating diverse pseudo-labels. By proposing the Bidirectional Mean Feature Normalization (BMFN), the model can increase its discriminability at the feature level and address key limitations in existing methods.

Experimental results conducted on three widely used UDA Person Re-ID datasets demonstrate that our CORE-ReID outperforms state-of-the-art approaches in terms of performance.

Paper Title: “CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification”.

Related URLs:
Papers with code – Unsupervised Domain Adaptation’s benchmark – https://paperswithcode.com/task/unsupervised-domain-adaptation
Papers with code – https://paperswithcode.com/paper/core-reid-comprehensive-optimization-and
Paper – https://www.mdpi.com/2674-113X/3/2/12
Project Page – https://trinhquocnguyen.github.io/core-reid-homepage

生成AIを活用したサイバーコアのRe-ID(人物再認識)アルゴリズム「CORE-ReID」が論文掲載サイト「Papers with Code」の該当カテゴリで1位にランクイン

2024.07.09

生成AIを活用したサイバーコアのRe-ID(人物再認識)アルゴリズム「CORE-ReID」が論文掲載サイト「Papers with Code」の該当カテゴリで1位にランクイン

生成AIによる学習データの拡張:元画像から、他のカメラの画質や特長に合わせたデータを生成。

生成AIによる学習データの拡張:元画像から、他のカメラの画質や特長に合わせたデータを生成。

サイバーコアのUnsupervised Domain Adaptation(UDA、教師なしドメインアダプテーション)Re-ID(Re Identification、人物や対象物の再認識)アルゴリズムであるCORE-ReIDが、世界中の研究者が集まる論文掲載サイト、Papers with Codeで該当カテゴリ1位にランクされました。

CORE-ReIDアルゴリズムの名前は、サイバーコアに由来しています。本研究は、当社と岩手県立大学のプリマ オキ ディッキ アルディアンシャー博士および研究室と共同で、当社のAIエンジニアが実施しました。

CORE-ReIDの特長:
CORE-ReIDの特長は、以下の4つの点になります:

1. CycleGANによる学習データ生成: CycleGANを利用して、事前学習段階で多様なデータを作成し、さまざまなカメラソースからの画像特性を調和させました。
2. Teacher-Student Networks for Multi-View Features: 異なる画角の特徴量学習のためのTeacher-Student(教師-生徒)ネットワークの活用。
3. Innovative Efficient Channel Attention Block (ECAB): 特長のチャネル間の関係を活用し、入力画像内の意味のある構造に焦点を当てて学習を強化し、特徴抽出を強化。
4. COREフレームワーク: 効率的なチャネルアテンションブロック:  CORE(Comprehensive Optimization and Refinement through Ensemble Fusion)フレームワークは、グローバルとローカル(上部と下部)の特徴の適応的融合を実行可能にします。

広く用いられている3つのUDA Person ReIDデータセットでベンチマークを実施した結果、CORE-ReIDの性能は、他の最先端アプローチよりも優れている点が示されました。

論文タイトル: “CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification”.

Related URLs:
Papers with code – Unsupervised Domain Adaptation’s benchmark – https://paperswithcode.com/task/unsupervised-domain-adaptation
Papers with code – https://paperswithcode.com/paper/core-reid-comprehensive-optimization-and
Paper – https://www.mdpi.com/2674-113X/3/2/12
Project Page – https://trinhquocnguyen.github.io/core-reid-homepage